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Abstract-The fluid dynamic and heat transfer behavior of laminar non-Newtonian flow through non- 
circular ducts is of special interest because of their wide range of potential application to compact heat 
exchangers and in electronics cooling. The present study investigates the heat transfer characteristics for 
laminar forced convection of inelastic non-Newtonian fluids in a nonuniformly heated rectangular duct 
where the flow is hydrodynamically developed but thermally developing. The governing equations are 
solved by a finite volume method. Second-order accurate differencing schemes are employed for both the 
diffusion and convective terms. The effects of shear thinning. given by the Carreau equation, and the 
viscous dissipation, characterized by the Brinkman number, are examined via the friction factor, the 
Nusselt number, and the bulk fluid temperature. The results indicate that when viscous dissipation is 
present. the heat transfer from the heated surface of the duct is greatly enhanced with increased shear 
thinning of the fluid while the rate of increase of the bulk fluid temperature with axial distance will 
significantly decrease. Consequently, the use of a shear-thinning non-Newtonian fluid for heat transfer 

enhancement appears to be a very promising concept that is worthy of further study. 

INTRODUCTION 

A STRONG interest in the flow of non-Newtonian fluids 
in rectangular ducts exists as evidenced by a recent 
review article by Hartnett and Kostic [I]. This interest 
stems from the practical use of these fluids in heat 
exchangers, and, more recently, in the cooling of elec- 
tronics. Note that the laminar heat transfer from 
the heated top wall of a square duct was reported 
to increase by approximately 200-300% from the 
Newtonian value when aqueous solutions of Car- 
bopol or polyacrylamide were used, a phenomenon 
attributed to a secondary flow caused by these non- 
Newtonian fluids. Another interesting feature of 
these non-Newtonian fluids in a rectangular duct 
was that the secondary flow did not affect the 
pressure drop [I]. 

With the recent trends toward increased minia- 
turization and component density, as well as com- 
ponent heat dissipation, thermal management has 
become the primary factor in the design of any elec- 
tronic equipment. The thermal design problem is 
aggravated further by the demands of system per- 
formance and reliability that dictate much lower com- 
ponent junction temperatures. To obtain a satisfac- 
tory system performance for electronic equipment, the 
device temperature should not exceed the reliability 
limits. and the maximum temperature difference 
between any two points within the entire system 
should be less than a specified value. In order to 
achieve these goals, an efficient and novel way to 

t Killed in a car accident on 17 February 1992. 
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maintain these stringent system temperature control 
requirements, namely, the use of non-Newtonian 
fluids in either a counterflow or parallel flow heat 
exchanger to enhance the heat transfer rate, is ex- 

plored in the present work. 
The most important features of non-Newtonian 

fluids for heat transfer applications are the shear-rate 

dependence of the viscosity, the viscoelastic nature of 
these fluids, and the rate of viscous dissipation. In 
order to characterize the shear-thinning viscosity, 
we employ an inelastic constitutive equation for the 
non-Newtonian fluid as proposed by Carreau [2.3] 

II(f) = r, +(~,,-~,)[I.O+(;~)Z]~‘J ” z (1) 

in which q. is the zero-shear-rate viscosity, f7 is the 
infinite-shear-rate viscosity, ;is the characteristic time 
equal to the reciprocal of the shear rate at which shear 
thinning begins, and (n - I) is the power-law slope of 
the viscosity with respect to the shear rate. This model 
has been used quite successfully to fit our current 
measurements for the ethylene glycol/water solutions 
with various non-Newtonian additions. In order to 
conduct a systematic investigation of the subject, the 
viscoelastic aspects of the problem will be excluded 
here and studied later. Assessment of the significance 
of shear thinning in the rectangular duct flow can be 
made by inspecting the value of the Carreau number 
(i.e. an inelastic Deborah number) [4] defined as fol- 
lows 

cu = XV&& (2) 

where vaVg is the 2-j cross-sectional plane average 
velocity, and 6, is the hydraulic diameter of the duct. 

Our primary goal in this paper is to assess the role 
of the shear thinning as delineated by the variable 
viscosity on both the velocity and thermal fields with 
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the following motivation. Since shear thinning is the 
most readily measurable non-Newtonian property, it 
is of practical interest to understand what flow prop- 
erties can bc correlated with it. An improved under- 
standing of the physics involved in the hydro- 
dynamically developed and thermally developing flow 
in heat exchangers and in electronic cooling will 
greatly assist in the design and manufacture of these 
products. 

There have been a number of studies [S-IO] on the 
case of hydrodynamically developed, thermally devel- 
oping flows of non-Newtonian (inelastic) fluids in 
ducts. However, there do not appear to be any studies 
focusing on inelastic fluids in rectangular ducts in 

includes these more realistic boundary conditions, but 
also the effect of viscous dissipation on the devel- 
opment of the thermal field. Even at moderately low 
Brinkman numbers. ~~~,,,~,,,!((l~~,.ii,,). which is a mea- 
sure of the magnitude of the viscous dissipation, the 
viscous djssip~~tion can produce signjji~~nt ef’fccts on 
thermal development, as demonstrated by Gry- 
glaszewski t’t (11. [l I]. Note y,,, is the reference viscosity 
taken as the zero-shear-rate viscosity, ,7(,. and L/y,, is 
tbc heat flux applied to the top boundary. To OUI 
knowledge, this work is one of the first attempts to 
examine the implementation of non-Nc~v~onian 
liquids into electronic cooling technotogy. 

which the boundary conditions are directly applicable 
to electronics cooling, which include the combination 

PROBLEM DESCRIPTION AND ASSUMPTIONS 

of forced/natural convection and radiation to the In summary, the objective of this work is to predict 
exterior environment from the duct and the impo- the steady hydrodynamically developed and the 
sition of the heat dissipation from electronic com- thermally developing laminar flow of an inelastic fluid 
ponents to the duct walls. The present study not only in a rectangular duct, which is the key component 
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in an electronics cooling system. A schematic of the 

system under consideration is shown in Fig. I(a). 

The exploded view of the coldplate and the individual 
module are shown in Fig. 1 (b). The heat dissipated in 
an individual electronic box (or module) is carried 
away by a heat pipe or solid conduction bar to the 
heat exchanger (often referred to as the coldplate in 
the electronics industry), and then heat is rejected to 

the fluid (coolant). The fluid enters the duct with a 
uniform temperature Fi, and since the flow is hydro- 
dynamically developed, the velocity is determined by 
balancing the externally imposed pressure gradient, 
dl’jd, with the molecular diffusion of momentum 
within the duct. The duct walls may be subjected to 

any one or a combination of the following four ther- 
mal conditions : 

(a) an applied heat flux, $‘, constant along any 
given wall ; 

(b) a radiative flux, CSE(F: -i;,“), from the duct 

to the exterior environment, where 6 is the Stefan- 
Boltzmann constant, and c: is the emissivity of the 
surface; 

(c) a forced convective flux, &(Tw-- Fe).. from the 
duct to the other flow channels, where & is the forced 

convection heat transfer coefficient for flow along a 
finite width plate ; 

(d) a natural convective flux, &,,(i;,, - ?=c)““, from 
the duct to the exterior, where h,,,(Fw-- rc) ‘lJ is the 
heat transfer coefficient with h-,, depending upon ther- 
mal properties and geometrical Dimensions, 

and the 5/4 power for the temperature exponent cor- 

(a) 

HEAT PIPE OR 
CONDUCTKJN BAR 

responds to an arbitrarily oriented flat surface in a 

buoyancy induced flow [ 12, 131. 

In order to simplify the computational model, the 
following treatments are incorporated : 

(a) constant fluid properties except for the viscosity 
which is dependent on the shear rate; 

(b) no axial conduction of thermal energy, which 
requires that the Peclet number (i.e. the product of 
the Reynolds number, Rr. and the Prandtl number, 
Pv) be large ; 

(c) buoyancy effects are much smaller than the iner- 
tial effects within the fluid, which requires that the 
ratio of the Grashof number to the square of the 
Reynolds number, Grj Re’, be small ; 

(d) generalized Newtonian (i.c. inelastic) fluid 
according to the Carreau model ; 

(e) walls between coolant channels are infinitely 
thin so that boundary conditions may be applied 
directly to surface of fluid (i.e. conjugate problem not 
considered here). 

With the aforementioned constraints, the present 
computational model represents an ideaiization of the 
scenarios often encountered in electronics cooling 
technology as ikistrated in Fig. I. 

FORMULATION AND NUMERICAL 

TECHNIQUES 

The non-dimensional form of the conservation 
equations of mass, momentum, and energy for a 
hydrodynamically developed and thermally devel- 

oping flow in a rectangular duct are given as follows : 

(b) 1, ELECTRCNIC BOX OR MODULE 
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Ii P : : : : : : ; g 
: i ~NDUCT~N BAR OR HUIT PIPE 
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COOLING CHANNEL 
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OUTLET ST 
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ELECTRONIC Box 
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FIG, 1. (a) Sketch of a multiple-channel flow system for electronic cooling, and (b) exploded view of 
coldplate cross section and individual module. 



continuity : 
” 

I/ 
L:,(.\.. ,v) d.r do = I .O 

axial momentum : 

energy : 

where Re = (p~.,,.,&)jijrc, is the Reynolds number 
based on qrcl and ,f’ = (-dP/dZ)/[IS,,/(2PP,~,,)] is the 
Fanning friction factor. 

All of the pertinent features of the viscosity function 

may be described by the Carreau model, equation (2). 
which in dimensionless form is 

,I(;;) = ‘I, _t(fl,,-17, )[I.()$-(C‘r,;:)?]“’ ” :. (6) 

At low shear rwtcs (C’U;; << I .O). the model predicts 
a constant viscosity/ I)(,. and at high shear rates 
((‘II;: >> I .O). power-law behavior with a power-law 

slope (n- I) will be obtained. The product of the 
Fanning friction factor. ,f; and the Reynolds number. 
Re, represents a momentum source term in the non- 
linear axial momentum equation [I]. 

In order to assess the role of viscous dissipation in 

the thermal development of the flow field, the Brink- 
man number, Br, a measure of the magnitude of the 

viscous dissipation, will be employed. This term may 
often be neglected for Newtonian fluids; however. 
depending on the duct geometry and rclativc volu- 
metric flow rate, viscous dissipation may have a 

dramatic effect on the thermal flow held in non- 
Newtonian fluids even with a modest value of the 
Brinkman number. Note that when liquid cooling is 
employed in electronics cooling, a mixture of water 

and ethylene glycol is often the fluid of practical 
choice. In this case even for a Newtonian tiuid, the 
effect of viscous dissipation should bc examined. The 

volumetric heat generation, S,, may arise from either 
a chemical reaction or joule heating. Although thcsc 
effects arc seldom cxperienccd in an electronics 

cooling scenario, they are retained in the com- 
putational model for generality. 

Both the velocity and a generalized form of the 
thermal boundary conditions in non-dimensional 

form are given below. A sketch of the rectangular 
duct with the problem specific boundary conditions is 
shown in Fig. 2. The no-slip boundary condition is 

applied along the periphery of the duct for the axial 
velocity component. The thermal boundary con- 
ditions along the periphery of the duct are given in a 
generic form which incorporates boundary conditions 
of the first, second, and third kinds in addition to 
natural convection boundary conditions. thermal 
radiation boundary conditions. or any combination 
thcrcof: 

axial momentum : 

r,(O,y) = 0 (7) 

FORCED CONVECTION 
BOUNDARY CONDITION 

NATURAL CONVECTION 
BOUNDARY CONDITION 

FIG. 2. Specific thermal boundary conditions. 
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I-+1 
VL Yjjr,Y =o ( > 

u,(x,O) = 0 (9) 

l-+1 
1’; .Y, -2r = 0 ( > (10) 

energy : 

c,4+c2[(;;)g -($g] = Cl (11) 

where 

cz = 

i 

1 : non-constant temperature boundary condition 

0 : constant temperature boundary condition 

(12) 

ds = [(dx)‘+(dy)2]“’ (13) 

C, = I, fIzBifc+I, Bi”c($-c#&)“4 

+r,B~,,,(~+~,)(~?+~,2) (14) 

C = 1, &Iven + 1, Bin & + 1, B&,(4 - 4,) “4+e 

+14Birad(~+(be)(~‘+~eZ)~=+Isq” (15) 

I, = 

1 

1 : constant temperature boundary condition 

0 : non-constant temperature boundary condition 

(16) 

1 : forced convection boundary condition 
I? = 

( 0 : constant temperature boundary condition 

(17) 

1 : natural convection boundary condition 
I.1 = 

i 0 : constant temperature boundary condition 

(18) 

{ 

1 : radiative flux boundary condition 
I, = 

0 : constant temperature boundary condition 

(19) 

1, = 
i 

1 : constant heat flux boundary condition 

0 : constant temperature boundary condition. 

(20) 

The Biot numbers, Bi, represent the ratio of the 
exchange of energy between the duct and the 
exterior environment by forced/natural convection or 
radiation to the diffusion of energy within the fluid. 

Solutions of the problem defined by the foregoing 
equations were obtained numerically by finite volume 
procedures [14, 151. A second order accurate differ- 

ence scheme was employed for the diffusion terms 

while the second order upwinding scheme [16] was 

employed for the convective term in the energy equa- 

tion for all interior nodal points. For the near bound- 
ary control volumes, there was no need for a special 
discretization equation since the boundary condition 
data could be directly employed at the boundary face. 

This convenient property arose due to the fact that 
the grid points were placed at the centers of the control 

volume. In the calculation of the rate of deformation 
tensor, a second order central diffcrencc scheme was 

employed for the interior nodes while a first order 
difference between the near-boundary and boundary 
nodal points was employed for the near-boundary 

control volumes. In order to accurately calculate the 
viscosity at the control volume interfaces, the har- 
monic mean method [ 171 was employed. 

A fully implicit solution technique was adopted for 

both the momentum and energy equations at any 

given axial location. At a given axial location, the 
successive line under-relaxation (SLUR) procedure 
[ 181 was employed for the solution of the implicit finite 
difference form of the governing equations. Since the 

energy equation is parabolic in the axial direction, a 
marching solution was employed. For the momentum 
equation, a predtctor/corrector method has been 

developed by employing the SLUR for the inner iter- 
ation solver for a given ,f Re product in combination 
with the van Wijngaarden-Dekker-Brent searching 

methodology [19, 201 for the outer iteration. 
Prior to employing the van Wijngaarden-Dekker- 

Brent methodology. an initial estimate for the value of 
,f’ Re, termed (,f Re) ,, is generated either from values 
obtained for larger power-law index. n, simulations 
or from coarse grid solutions for the same power- 
law index. The second outer iteration value for f’ Re, 
termed (,f’ Re)>, is obtained as follows 

(.f’Re), = (f’WIIGI[(f‘Re)J (21) 

where G, [(,f Re) ,] represents the continuity con- 
straint. 

G(f’ Re) = 1 .O - ( ~&a,c % 0. (22) 

In all further outer iterations, the van Wijngaarden- 
Dekker-Brent methodology is employed. In each 
outer interation, there are now available three 
abscissas ( f’ Rr),, (,f‘Re),, and (,f’Re),, where 

(a) (.f Re), is the latest iterate and the closest 

approximation of the zero of the continuity con- 
straint ; 

(b) (J’Re)* is the previous iterate; and 
(c) (f Re), is the previous or an older iterate so 

that G[(f‘Re),] and G[(f Re)c] have opposite signs. 

At each outer iterative step, the next iterate is 
chosen from two candidates-one obtained by the 
bisection algorithm and one obtained by an interp- 
olation algorithm. Inverse quadratic interpolation is 
used when (,f Re),, (.f’Re)“, and (,f‘Rc), are distinct 
and linear interpolation (the secant method) is used 



whenever they arc not. In ~hc invcrsc quadratic intcrp- 
elation, tbc next root estimate for the conlinuity con- 

straint is given as 

(,f’ RG.,, = (,f’Re),, $ r’:y (33) 

whcrc in terms ol 

R = G[( f’ Rc),,j!C;[( f’ Rc), ] 

S = G[( f’ Rc),,] G[( ,I’ Rc,) \ J 

WC have 

Q = (T- l)(i?- I)(S- 1). 

If the point obtained by interpolation is inside the 
current interval and not too close to the end points, 
it is chosen ; otherwise. the bisection point is chosen. 
AI all times. (,f Rc),, and (.f‘ Re),. bracket the zero of 
the continuity constraint : moreover, 

lG[(./'~~~),II C IG[U'~eh.ll. (24) 

When the internal I( ,f‘ Re),- (,f Ru),,J has been 
reduced to satisfy 

/(.f’R&-f.!‘R+I d 10 a (25) 

the continuity constraint is considered satisfied, and 
the iteration process for the momentum equation is 
stopped. For complete details, see Brent’s text [19]. 

Convergence for the SLUR procedure was moni- 
tored by examining how we11 the discrcti~ation equa- 

tions are satisfied by the current values of the depen- 
dent variables. For each grid point. the residual R was 

calculated as 

R = Ctr ,,,, O,,,+h-tr,,O,, (26) 

where O,, are the neighboring dependent variables, and 
anh are the coefficients correspoi~ding to these neigh- 
boring dependent variables, h represents the other 
terms in the governing finite difference equations, (I,, 
is the current nodal point depcndcnt variable, and L+, 
is the coefficient corresponding to (I,,. The convergence 
criteria for the SLUR method rcquircd that for any 
given grid point, the absolute value of the residual /R 1 
be less than 10 mi. 

Prestw tation paranwtcw 

The specific thermal boundary conditions associ- 
ated with a single coolant duct within the coldplate 
were given in Fig. 2. The present thermal boundary 
conditions are a subset of the generic thermal bound- 
ary conditions presented in equation (1 I). The top 
boundary of the coolant duct receives a constant heat 
flux, y”, from the conduction bar or hcdt pipe, while 
the two side boundaries exchange energy to the two 
adjacent cooling channels via forced convection, Bi,. 
The bottom boundary of the coolant duct is usually 

Iwatcd ;iI the bottom 01‘ an cicctromcs 0bincr anti 
oltcn acts its the top boundary of an enclosed :iil 

space. Hence. the cncrgy exchange between tbc cool- 

ant duct’s bottom surFace and the unclosed stir space 
may be by either natural convection or radiation or a 

combination of the two. In the present study. the 
energy exchange from the coolant duct’s bottom 
boundary to the enclosed air space only includes 

the natural convective energy transfer, Bi,,,. Rcp- 
resentatibc values for (1”. Bi,,, and Bi,,,, commonly 

encountered in the electronic cooling applications, are 
given as 1.0. 10.0. and 1.0. rospectivcly. and these 

values arc adopted for all of the numerical simula- 
tions. Also, wc only consider a duct aspect ratio of 
I .O in the current iilvestj~dtion. 

In the design of a liquid cooling system for elec- 

tronics, a design engineer must examine three key 
parameters in order to cnsurc a reliable and cost effec- 
tive design. The first parameter is the prcssurc drop 
within the system. Once a Reynolds number has been 
chosen, the value of f’ Rc will yield the slumping 
requirements (i.e. pressure drop) for the system under 

consideration. Second, the heat transfer rate from the 
heated wall of the coolant duct to the fluid is another 
key paramctcr. The heat transfer rate ultimately deter- 
mines the junction temperature of the electronic com- 
poncnts. which, in part, dictates the reliability of the 
entire system. The third key parameter is the incrcasc 
of the bulk fiuid tempcraturc as a function of axial 

distance. The axial gradient of the bulk fluid tem- 
pcraturc is an indicator of the overall thermal gradient 
within the system. As stated earlier. this thermal gradi- 
ent must bc minimized to cnsurc system reliability and 
accuracy. Hcncc, thcsc arc the three parameters which 
we will conccnlratc on in our present assessment of 
thu role of shear thinning of an inclaslic fluid in a 

hcatcd rectangular duct. 
The,!’ Re product shall be examined in terms of the 

wail shear rate and viscosity in order to delineate its 
characteristics in lion-Newtonian flows. In the non- 
dimensional Carrcau equation the values of ~~,~ and 

‘1 2 arc taken as I.0 and 0.0, respectively. Another 
paramctcr is the axial bulk fluid temperature which in 
dimensionless form can be expressed as 

The bulk fluid tcmpcrature is examined in terms of 
shear thinning for the Carreau number between I 
and 50. the power-law index from 0.2 to 1.0, and the 
viscous dissipation of the fluid with the Brinkman 
number va~.ying between 0 and 50. The fmal parameter 
of interest is the averaged Nusselt number along the 
top boundary which can be written in dimensionless 
form as follows 

where the mean wall temperature is given as 
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where &,, is the temperature along the top boundary. 
The Nusselt number will also be examined in terms of 
shear thinning and viscous dissipation. The values of 
Cu, n, and Br are typical of designs presently under 
consideration. 

RESULTS AND DISCUSSION 

Prior to presenting any solutions of our main inter- 
est, the appropriate grid size is assessed. On a uniform 

grid, a series of simulations of varying grid sizes was 
made for the momentum and continuity equations for 

a Newtonian (n = 1) fluid, for which well established 
values of,f Re are available. As depicted in Fig. 3, the 

value of ,f’ Re became independent of the number of 
grid points beyond a grid size of 52 x 52. Hence, for 
all calculations a 52 x 52 grid size will be employed. 
For the energy equation an appropriate axial space 
marching step had to be determined. Upon examining 
spatial marching step sizes from 10m4 to IO-‘, it was 
found that beyond the first three axial spatial steps 
the results were independent of the step size employed. 
Thus, a step size of 10-j was employed for all cal- 
culations in order to balance the need for resolving 
the fast profile variation in the entrance region 
and obtaining solutions with resonable computer 
resources. 

Figure 4 shows f Re as a function of Carreau num- 
ber for different power-law indices. As expected, the 
,f’Re product decreases with increased shear thinning 
(i.e. increasing Carreau number and/or decreasing 
power-law index). In order to further delineate the 
physical mechanisms involved in Fig. 4, Figs. 5(a) 

and (b) show the distribution of the viscosity and 
shear rate along the wall in any given X-JJ plane with 

different values of Carreau number and a power-law 
index. n = 0.8. It is observed that while the viscosity 
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. 
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FIG. 3. Product of Fanning friction factor and Reynolds 
number vs number of grid points. The present calculation 

used a grid number of 52 x 52 (= 2704). 

B 
L 

CARREAU NUMBER, Cu 

FIG. 4. Product of Fanning friction factor and Reynolds 
number vs Carreau number. 

varies with Cu, the wall shear rate profiles are similar 
irrespective of the Carreau number. According to the 
viscosity formula, equation (6) the fluid behavior 
mimics that of a power-law fluid, since, as dem- 

cu = 10,000 
o.o* 8 - . r - j 

0.0 0.2 0.4 0.6 0.8 1 .o 

NON-DIMENSIONAL DISTANCE ALONG WALL 

5b 
12 

n = 0.8 

0 

NON-DIMENSIONAL DISTANCE ALONG WALL 

FIG. 5. (a) Non-dimensional viscosity vs non-dimensional 
distance along wall, i.e. z = ?/(D, Re Pr), and (b) non- 
dimensional shear rate vs non-dimensional distance along 
wall both for a fixed value of n = 0.8. CU = Carreau number 

defined in equation (2). 
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FK. 6. Product of Fanning friction factor and Reynolds 
number vs power-law index, II. 

onstrated by Fig. 5(b), (CUB)? is large for almost the 
entire wall region. Furthermore, by maintaining a 
fixed mass flow rate through the duct, the value of 
,fRe must adjust according to the value of Cu in 
order to satisfy the constraints arising from both mass 

n = 0.2 
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0.0 0.2 0.4 0.6 0.6 1.0 
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FIG. 7. (a) Non-dimensional viscosity vs non-dimensional 
distance along wall, i.e. z = ~J/i(b, Re fr), and (b) non- 
dimensional shear rate vs non-dimensional distance along 

wall both for a fixed value of Carreau number of I .O. 

continuity and velocity profile similarity. Hcncc, I Kc, 
dccrcascs monotonically along with C’U l01. ;I $\cn 
value of power-law index. 

In Fig. 6. f’ Rt, as a function 01‘ power-law index is 

given for diffcrcnt Carrcau numbers. As expected, fog 
;I decreasing power-law index. ,f’Rc dccrcascz. indi- 
cating that by increasing the dcgrcc of shear thinning 

of the fluid. the wall shear rate dccrcascs. Dcspitc the 
filet that the v~all shear rate incrcaacs 2s II bccomcx 
sniallcr. the \,iscosity dccrcabcs c\‘cn I’asrcr. clearly 

obscrvcd in Figs. 7(a) and (b). Since the shear stress 
is the product of the shear rate and the viscosity, there 
will bc a net decrease in wall shear stress (i.e. ./ Rc). 

In the previous set of results the values of the powcr- 
law index have ranged from II = I.0 to /z = 0.2. It 

should be emphasized that the results presented above 
could cvcn be obtained for a relatively low power-law 
index, II = 0.2. It is well known that as 11 bccomcs 

smaller, the relationship between the fluid viscosity 
and shear rate becomes more nonlinear. causing 

increasing difficulty in obtaining numerical solutions. 
In fact. to our best knowledge. the computational 
results associated with such a low value of II for this 
particular flow scenario have ncvcr been reported in 
the literature [?I. ‘X]. 

The averaged Nussclt number along the top bound- 
ar) as a function of power-law index, C‘arrcau num- 
ber, and Brinkman number is shown in Figs. 8~ IO. 
For HK = 0. Figs. 8(a). 9(3). and IO(a) show the cffcct 
of the Carreau number for a range of power-law index. 
II = 0.2-1.0. It is seen for any non-zero value of the 
Brinkman number, there is a significant increase in 
the top boundary average Nusselt number as Carreau 
number increases for a given power-law index fluid. 
The cffcct of shear thinning on the overall heat trans- 
fer rate becomes more modest as the Brinkman num- 
ber reduces to Lcro, due to the I:dct that, with Br = 0. 
no heat source (i.e. viscous dissipation) is present 
within the fluid. Likewise. for dccrcasing values of the 
power-law index at a given Carrcau number. there is 
an increase in the heat transfer from the top boundary 
to the fluid for all non-negligible values of Brinkman 
numbers. Furthermore, for non-Lero Rr, this incrcasc 
is quite dramatic. For a given power-law index and 
Carrcau number. an increasing viscous dissipation 
results in a significant decrease in the heat transfer 
between the wall and the fluid. The overall impact 
of the Brinkman number on the Nusselt numbcl 
depicted in Figs. &IO is quite substantial. 

In all of the figures presented, thcrc is a region in 

the proximity of -_ = 0.1 whcrc there is a local mini- 
mum in the heat transfer between the wall and the 
fluid followed by a gradual approach to an asymptotic 
state near z = 1 .O. The reason for this local minimum 
in the top boundary’s Nusselt number may be 
explained in terms of the difference in the rate of axial 
temperature increase between the top boundary’s 
centerline and its side corner locations. As a rep- 
resentative case for CM = 1, n = 0.6, and Br = 0.5, 
Fig. I I depicts the top boundary’s centerline and side 



8a 
20 

15 

1 

10 

5 

0 
,001 .Ol .I 1 IO 

NON-DIMENSIONAL AXIAL DISTANCE 

9c 

,001 .Ol .I 1 10 

Bb 

NON-DIMENSIONAL AXIAL DISTANCE 

8d 

0.0-l . ..“.“I “...‘.. . “““I ..- 

,001 .Ol .l 1 IO 

NON-DIMENSIONAL AXIAL DISTANCE NON-DI~~NS~~L AXIAL DW’ANCE 

FIG. 8. Nusselt number vs non-dimensional distance along wall, i.e. z = F//f& Re Pr), for a fixed value of 
Carreau number of 1 .O : (a) Br = 0.0, (b) Br = 0.5, (c) Br = 5.0, and (d) Br = 50.0. 

9a 9b 
18-j I 17> 

,001 .Ol .I 1 IO ,001 .Ol .l 1 ro 

NON-DIMENSIONAL AXIAL DISTANCE 

b 

NON-DIMENSIONAL AXIAL DISTANCE 

9d 

cu-10 \ L-l & - 5.0 

n = 0.2 

\ $I$- 
nm1.0 

+ _ . . . ...* . __r . . . . 0 
.OOl .Ol .1 1 10 .001 .Ol .I 1 10 

NON-DIMENSIONAL AXIAL DISTANCE No-DIM~NS~NAL AXIAL DISTANCE 

FIG. 9. Nusselt number vs non-dimensional distance along wall, i.e. z = f/(b,, Re Pr), for a fixed value of 
Carreau number of 10.0 : (a) Br = 0.0, (b) Br = 0.5, (c) Br = 5.0, and (d) Br = 50.0. 

Ch-10 r Br-50 

" = 0.2 



3- ,001 .Ol .l IO 

NON-DIMENSIONAL AXIAL DISTANCE 

,001 .Ol .l 1 10 

NON-DIMENSIONAL AXIAL DISTANCE 

~-Dl~~NS~~AL AXIAL DISTANCE 

10d 

i\, 

cum60 cl Br-50. 

” = 0.2 
5 

m 

Do1 .Ol .1 1 IO 

NON-DIMENSIONAL AXIAL DISTANCE 

FIG. 10. Nusselt number vs non-dimensional distance along wall, i.e. ; = _‘(l&, Re Pr), for a fixed value of 
Carreau number of 50.0: {a) Br = 0.0, (b) f3r = 0.5, (c) Br = 5.0. and (d) Br = 50.0. 

corner temperatures, and the mean temperature (i.c. 
see a dashed line) along with the bulk fluid tempera- 
ture. It is clearly seen that while the difference between 
the bulk fluid temperature and top boundary corner 
telnperature becomes smaller with axial distance, the 
difIcrence between the centerline temperature and the 
bulk fluid temperature increases. The physical mech- 
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Fro. I I. eon-dimensional temperature vs non-dimensional 
distance along Wall, i.e. z = ?/(b,, Re Pr). 

anism responsible for this phenomenon is the differ- 

ence in the local shear rate as well as the viscosity for 
the corner and centerline locations which affect the 
energy batance. The varying slope of the four tem- 

perature profiles along the axial direction, as shown 
in Fig. I I, results in the appearance of a minimum 
value in the Nusselt number profile. 

In order to quantify the effect of shear thinning with 
the viscous dissipation, Fig. 12 presents the percent 
increase in heat transfer by taking the ratio of the 
heat transfer at II = 0.2 (i.e. highly shear thinning) to 
n = 1.0 (i.e, Newtonian) as a function of Brinkman 
number at Cu = 10. Hence, it may be observed in 

these graphs that a highly shear-thinning fluid 
(n = 0.2) at a relatively low Brinkman number 
(Br = OS), a fluid combination which will probably 
he cmptoycd in future electronics cooling appli- 
cations, can have a more significant advantage in heat 
transfer removal than its Newtonian counterpart with 
the same Br. In present electronics cooling appli- 
cations with ethylene glycol (i.e. a Newtonian fluid), 
the Brinkman number varies from 0.01 to as high as 
I .o. 

As mentioned earlier, another parameter of sig- 
nificant design interest for electronics cooling is the 
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FIG. 12. Nusselt number ratio vs Brinkman number at three 
different axial locations. Note that z = i(b, Re Pr). The 
Nusselt number ratio represents the relative increase of the 
Nusselt number compared to a Newtonian value due to the 

use of non-Newtonian fluid. 

bulk fluid temperature. Figures 13-15 show the bulk 
fluid temperature as a function of power-law index, 
Carreau number, and Brinkman number. For Br = 0, 

the rise in the bulk fluid temperature is virtually inde- 
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pendent of both the power-law index and Carreau 

number (i.e. shear thinning). One should note that 
even with Br = 0, the detailed temperature dis- 

tribution is clearly affected by the effect of shear thin- 
ning, as shown by the variation of the Nusselt number 
depicted earlier in Figs. 8-10. It is the bulk fluid tem- 
perature, which is an average of the local velocity 
and temperature profiles, that is mostly unchanged by 
shear thinning. 

For a non-zero Brinkman number, the rate of 

increase of the bulk fluid temperature as the fluid 
travels downstream of the initial heated cross sections 
varies significantly with the fluid’s shear-thinning 

characteristics. The percentage increase in the bulk 
fluid temperature between a Newtonian fluid (n = 1 .O) 
to a highly shear-thinning fluid (n = 0.2) may be 10 : 1 
for Br = 0.5 to as high as 150 : 1 for Br = 50. It is noted 
that with a given non-zero Br, the level of viscous 
dissipation of a shear-thinning fluid is higher than 
that of a Newtonian fluid because of its enhanced 
magnitude of the velocity gradient. Hence, it would 
seem that more heat generation produced within the 
the bulk fluid would cause an increase in the overall 
fluid temperature of a shear-thinning fluid ; however, 
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FIG. 13. Bulk fluid temperature vs non-dimensional distance along wall, i.e. z = ?/(d, Re Pr), for a fixed 
value of Carreau number of 1.0: (a) Br = 0.0, (b) Br = 0.5, (c) Br = 5.0, and (d) Br = 50.0. Note that 

results from five different n values (i.e. n = 0.2. 0.4,0.6, 0.8. and 1 .O) are shown in each figure. 
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results from five dif?‘erent II values (i.c. II = 0.2. 0.4. 0.6. 0.8. and 1.0) are shown in each figure. 

the fact that shear thinning can also result in a cor- 
respondingly higher temperature gradient means that 
the non-Newtonian fluids considered here can effec- 
tively transport this excessive heat away from the 
fluid. The net outcome is that shear thinning makes a 

non-Newtonian fluid more effective in heat transfer 
as the Brinkman number increases. 

SUMMARY AND CONCLUDING REMARKS 

The present study is an attempt to numerically 
mode1 the hydrodynamically developed and thermally 
developing flow associated with an ineIastic non- 
Newtonian fluid in a rectangular channel, a key com- 
ponent of an electronics cooling system. The follow- 
ing are the key findings : 

(1) When the viscous dissipation is present in an 
electronics cooling system, the electronics design engin- 
eer may significantly increase the system reliability 
(i.e. decrease the component’s junction temperature) 
by employing a shear-thinning non-Newtonian fluid. 

(2) For Br # 0, there is a significant increase in the 
averaged Nusselt number along the top boundary for 
both an increasing Carreau number for a given power- 
law index fluid and a decreasing power-law index 
for a given Carreau number. For a given power-law 

index and Carreau number, an increasing viscous dis- 
sipation results in a significant decrease in the heat 

transfer between the top boundary and the fluid. For 
flows with non-negligible viscous dissipation, the rate 
of increase of the bulk fluid temperature as the fluid 
travels downstream of the initial heated cross-section 
varies significantly with the fluid’s shear-thinning 
characteristics. 

(3) For Br = 0, the averaged Nusselt number along 
the top boundary does not have a strong dependence 
on either the Carreau number or the power-law index ; 
whereas, the bulk fluid temperature is independent of 

both the power-law index and Carreau number (i.e. 
shear thinning). 

(4) A new algorithm, comprised of the van 
WijngaardenDekkcrBrent root finding mcthod- 
ology, in conjunction with the SLUR method, has 
been developed to solve the coupled continuity and 
momentum equations for low power-law index fluids. 

(5) By maintaining a fixed mass flow rate through 
the duct, the value of ,f Re must adjust according to 
the value of C’u in order to satisfy the constraints 
arising from both mass continuity and velocity profile 
similarity. Hence, ,f’ Re decreases monotonically along 
with CM for a given value of the power-law index. 
Also, for a decreasing power-law index. .f Re 



Effects of shear thinning on laminar heat transfer behavior 2835 

NON-DIMENSIONAL AXIAL DISTANCE 

200 

g 

E 

p 100 

0 

2 

3 

ifi 

0 

NON-DIMENSIONAL AXIAL DISTANCE 

,001 .Ol .I 1 10 .ooi .Ol .I I 10 

NON-DIMENSIONAL AXIAL DISTANCE NON-DIMENSIONAL AXIAL DISTANCE 

FIG. 15. Bulk fluid temperature vs non-dimensional distance along wall, i.e. : = ?/(b, Re Pr), for a fixed 
value of Carreau number of 50.0: (a) Br = 0.0, (b) Br = 0.5, (c) Br = 5.0, and (d) Br = 50.0. Note that 

results from five different n values (i.e. n = 0.2, 0.4.0.6, 0.8, and I .O) are shown in each figure. 

decreases, indicating that by increasing the degree of 
shear thinning of the fluid, the wall shear rate 
decreases. 

Even without secondary flows as postulated by 
Harnett and Kostic [l], the present study has delin- 
eated the significant enhancement in the laminar heat 
transfer behavior through the use of shear-thinning 
inelastic fluids in a heated rectangular duct. In order 
to fully optimize a liquid cooling scheme for elec- 
tronics, the mechanism responsible for the secondary 
flow formation, the viscoelatic nature of the fluid, and 
the conjugate heat transfer issue will be addressed in 
future studies. Furthermore, the effect of temperature 
dependence upon the shear-thinning viscosity and 
subsequently upon the heat transfer will be inves- 
tigated. 
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EFFETS DE L’AMINCISSEMENT CISAILLANT SUR LE COMPORTEMENT 
THERMIQUE DANS UN CONDUIT RECTANGLJLAtRE 

Hbsum6-La dynamiquc du lluide et le transfert thermique dans I’&oulement laminalrc non newtonicn 
dans des conduits non circulaires sent inttressant d cause du large domaine d’application potential :lux 
&hangeurs compacts et dans Ic rcfroidissement en t-lectronique. La prksentc titudc concerne la convection 
for&e laminaire de Huidcs non neutonicns inClastiques dans un conduit rectangulairc non uniformiment 
chaull‘~. quand I’&coulcmcnt cst L:tabli mais pas la convection. Les equations sont r&olucs par une mtthodc 
de volumes finis. Lcs elTccts de I’aminclsscmcnt cisaillant. donn& par I’kquation dc Carrcau, ct la dissipation 
visqucusc caracttrist-e par lc nombrc de Brinkman sent examinks i truvcrs le coelficient de frottcment, le 
nombrc de Nusselt ct la tcmp~rnturc du Huidc. Lcs rt:sultats indiquent quc lorsque la dissipation visqueuse 
cst presente. Ic transfert thermiquc li pal-tit- de la surface chaulli:c du conduit cst fortcment augment& avcc 
l’umincisscment du fluide alors que I;( kitesse d’accroissement de la tempkrature du Ruidc ~lvcc la distance 
:lxiale dCcroit significativement. En cons0quence. I‘utilisatlon d‘un tluide non newtonien :I amincissement 

cia;Lillant pour I’amL:lioration du transfcrt thermique apparait ctre tr& prometteusc. 

WARMEUBERGANG BEI LAMINARER KONVEKTtON IN EINEM RECHTECK- 
KANAL UNTER DEM EINI-LUSS FINER SC~IUBSPANNUNGSBEDINGTEN VERDUNNUNG 

%usammenfassung~~Fluiddynamik und Warmeiibergang in dcr lamlnaren Striirnung cmes nicht-New- 
ton’schcn Fluids in cincm nicht-krcisftirmigcn Kanal ist von besonderem lnteresse im Hinblick auf die 
Weitc der miiglichcn Anwendungen in Kompaktwarmeaustauschern und bei der Kiihlung elektronischer 
Komponentcn. In der vorliegenden Arbeit wird der Wgrmeiibergang fiir laminare crzw’ungene Konvektion 
eines nicht-elastischcn niche-Ncwton’schen Fluids in einem ungleichl%rmig beheizten Rechteck-Kanal 
untersucht. wo die Striimung hydrodynamisch, jedoch nicht thcrmisch auspebildet ist. Die grundlegenden 
Gleichungen werden mit Hilfe eines Finite-Volumina-Verfhrens gelost. Sowohl fiir die Diffusions- wit 
such die Konvektions-Termc wcrdcn DillerenLenschcmata Twcitcr Ordnung an!ewandt. Die Einlliisse der 
schubspannungsbcdlngten Vcrdiinnung (beriicksichtigt durch dlc Cart-cau-Glclchun!) und dcr viskosen 
Dissipation (cntsprechcnd dcr Brinkman-Zahl) wcrdcn anhund der Widcrstandszifl’er. dcr Nusselt-Znhl 
und dcr Kcrntcmperatur dcs IFluidcs untersucht. Die Ergebnissc loigcn. d:i1) dcr Wirmciibergang an der 
behcirtcn Obertl%zhc mit ~unchmcndcr schubspannungsbedingter Vcrdiinnung dcs Fluids stark Tunimmt. 
Im Gegcnsatr daJu verringert sich &IS Anwachsen der Fluidtempcratur in axialer Richtung spiirbar. 
Es kann fcstgchaltcn werden. dalJ sich durch Verwendung nicht-Ncwton’scher Fluide. die sich unter 
Schubspnnnung verdiinncn. dcr Wiirmeiibergans wcscntlich vcrbesscrn IalJt. Dieses viclversprechendc 

Konzcr?t ist LIS somit wert. weiter untcrsucht 7u werdcn 

BJIkllIHkiE CHkWEHMII BR3KOCTM C POCTOM CKOPOCTki CABMl-A HA 
XAPAKTEPWCTHKM JIAMHHAPHOI-0 TEIIJIOIIEPEHOCA B KAHAJIE 

nPRMOYrOJlbHOr0 CEqEHMII 

AmroTamn-hiHah5kiKa manKocTei2 II raw*, a TaKme xapanep5icnimi TennonepeHoca npe naiwieap- 
HOM TCYCHAA HeHbIOTOHOBCKO~ XCHAKOCTU IIQ KaHanaM HeKpyrOBOl-0 Ce'leHHIl IlpeAOCTaBJISlEOT oco6brii 

AHTepeC H3-3a IltlipOKOl-0 AHatlZd30"a Hx B03MOmHOTO "pRMeHeHH5l B KOMIlaKTHbIX TeIUl006MeHHHKaX H 

Ann Oxna~AeHHS 3neKTpOHHKW. B HaCTOSLUeti pa6oTe HCCneAyIOTCX XapaKTepHCTllKH TeIInOne~HOCa 

IIpll naMHHapHOii BblHymAeHHOfi KOHBCKQHH HeynpyWx HeHbIOTOHOBCKHx XGZAKOCTeii B HeOAHOpOAHO 

HarpeBaeMOM KaHane "p~MOyTOAbHO~0 Ce'SeHBB, TCWHHC B KOTOpOM IIBnReTCZS TUApOAHHaMBYeCKA pas- 

BATbIM U TCpMHWCKIl pa3B"BaH,",HMCSL OIIpeAeAF‘IOlWe ypaBHeHH,I pCI"aloTCX MeTOAOM KOHe'IHbIX 

06%2MOB.~nZ4 CAa~aeMblx,COOTBeTCTByIO~Hx A&W$@y3Hiw H KOHBeKAHR,AC"OJIb3yH)TCI TOVHbIe pa3HOCT- 

HblCCXCMbl BTOPOL-0 nOpW,Ka. 3@~eKTbICHWKCHH~ BII3KOCTH,OIlRCbIBaeMbIe ypaBHeHHCM Kappo,a B113- 

KOCTHalf AllCCArIa~HII, xapaKTepa3ymmarca ~HCJIOM E;p)lHKMaHa, HcCnCAyEOTCn B JBBBCAMOCTU OT 

K03@@mieHTa ~pemin, wicna HyCCWIbTa H cpeAHeMaccoBoi2 TeMnepaTypbr ~HAKOCTH. IIonyreHHbIe 

pe3ynbTaTbl noKa3bmamT, 9~0 npu Hanmmi ensrtofi Asiccanawiu TennonepeHoc 0T HarpeTofi noeepx- 

HOCTU KaHUK4 CyIUeCTBeHHO yCEnHBaeTCfl C yBentl'4CHHCM CKOpOCTH CABHra xHAKOCTII,B TO BpeMSl KaK 

CKOpOCTb pOcTd ee C&W,HCMXCOBOh TCMWpaTypbI 3HaYHTenbHO yMeHbL"aeTCn C OCeBbIM paCCTO5lHHeM. 

CneAOBaTeJlbHO, AACSI IICIIOAb30BaHHR HeHbH)TOHOBCKOe XKUAKOCTM, XapaKTepU3yW"IeiicH CHHxeHEleM 

BZJKOCTH C POCTOM CKOPOCTA CABHE,, D,JIn HHTCHCU~UKBWIH TeI,nOI,epeHOCa IIBnReTCR IIepCIIeKTBBHOii A 


