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Abstract—The fluid dynamic and heat transfer behavior of laminar non-Newtonian flow through non-
circular ducts is of special interest because of their wide range of potential application to compact heat
exchangers and in electronics cooling. The present study investigates the heat transfer characteristics for
laminar forced convection of inelastic non-Newtonian fluids in a nonuniformly heated rectangular duct
where the flow is hydrodynamically developed but thermally developing. The governing equations are
solved by a finite volume method. Second-order accurate differencing schemes are employed for both the
diffusion and convective terms. The effects of shear thinning, given by the Carreau equation, and the
viscous dissipation, characterized by the Brinkman number, are examined via the friction factor, the
Nusselt number, and the bulk fluid temperature. The results indicate that when viscous dissipation is
present, the heat transfer from the heated surface of the duct is greatly enhanced with increased shear
thinning of the fluild while the rate of increase of the bulk fluid temperature with axial distance will
significantly decrease. Consequently, the use of a shear-thinning non-Newtonian fluid for heat transfer
enhancement appears to be a very promising concept that is worthy of further study.

INTRODUCTION

A STRONG interest in the flow of non-Newtonian fluids
in rectangular ducts exists as evidenced by a recent
review article by Hartnett and Kostic [1]. This interest
stems from the practical use of these fluids in heat
exchangers, and, more recently, in the cooling of elec-
tronics. Note that the laminar heat transfer from
the heated top wall of a square duct was reported
to increase by approximately 200-300% from the
Newtonian value when aqueous solutions of Car-
bopol or polyacrylamide were used, a phenomenon
attributed to a secondary flow caused by these non-
Newtonian fluids. Another interesting feature of
these non-Newtonian fluids in a rectangular duct
was that the secondary flow did not affect the
pressure drop [1].

With the recent trends toward increased minia-
turization and component density, as well as com-
ponent heat dissipation, thermal management has
become the primary factor in the design of any elec-
tronic equipment. The thermal design problem is
aggravated further by the demands of system per-
formance and reliability that dictate much lower com-
ponent junction temperatures. To obtain a satisfac-
tory system performance for electronic equipment, the
device temperature should not exceed the reliability
limits, and the maximum temperature difference
between any two points within the entire system
should be less than a specified value. In order to
achieve these goals, an efficient and novel way to

+Killed in a car accident on 17 February 1992.
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maintain these stringent system temperature control
requirements, namely, the use of non-Newtonian
fluids in either a counterflow or parallel flow heat
exchanger to enhance the heat transfer rate, is ex-
plored in the present work.

The most important features of non-Newtonian
fluids for heat transfer applications are the shear-rate
dependence of the viscosity, the viscoelastic nature of
these fluids, and the rate of viscous dissipation. In
order to characterize the shear-thinning viscosity,
we employ an inelastic constitutive equation for the
non-Newtonian fluid as proposed by Carreau [2, 3]

A6 =7, + =7 )10+ ()" "2 ()
in which #, is the zero-shear-rate viscosity, 7., is the
infinite-shear-rate viscosity, 4 is the characteristic time
equal to the reciprocal of the shear rate at which shear
thinning begins, and (n— 1) is the power-law slope of
the viscosity with respect to the shear rate. This model
has been used quite successfully to fit our current
measurements for the ethylene glycol/water solutions
with various non-Newtonian additions. In order to
conduct a systematic investigation of the subject, the
viscoelastic aspects of the problem will be excluded
here and studied later. Assessment of the significance
of shear thinning in the rectangular duct flow can be
made by inspecting the value of the Carreau number
(i.e. an inelastic Deborah number) [4] defined as fol-
lows

Cu = iV, Dy (2)

where V,,, is the -7 cross-sectional plane average
velocity, and D, is the hydraulic diameter of the duct.

Our primary goal in this paper is to assess the role
of the shear thinning as delineated by the variable
viscosity on both the velocity and thermal fields with
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Gel(d DR
Br Brinkman number, I \f\.t\,;j,.‘,‘~,"( greDy)
specific heat of fluid
Cu  Carreau number, £F,,,/ D,
D, hydraulic diameter

f Fanning friction factor,
(—dPd DTN

g gravity

Gr Grashof number

f,  forced convection heat transfer
coefficient

h,.  coefficient in natural convective flux

h.a  radiative heat transfer coefficient

K, thermal conductivity of fluid

n powcer-law index

Nu  top boundary Nussclt number.
equation (28)

P static pressurce

P non-dimensional static pressure,
15,'}(7 i_:\

Pr Prandt number, 7,,C,/K;

q" heat flux

Re  Reynolds number, (5V,,,D00)/firer

T. ¢xterior cnvironment temperaturc

T fluid inlet temperature

7. wall temperature

v velocity vector

7. axial velocity

o, non-dimensional axial velocity, &,/ V..,

NOMENCLATURE
Bi,.  torced convection Biot number. Ve average axial velocity
(. DY)/ K, 5,5 axes of Cartesian coordinate system
Bi.. natural convection Biot number. x.» non-dimensional axes of Cartesian
G DYy R coordinate system; ¥/D,. i/ D,
Bi ., radiation flux Biot number, axial distance
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non-dimensional axial distance;
(D, Re Pr).

Greek symbols

f volumetric expansion of fluid
T . IFR TR

3 shear rate,  ((7:¥)

¥ non-dimensional shear rate for

hydrodynamically developed flow,
[(67./65) +(02./07) ] "7
r aspect ratio (i.e. ratio of width to height)
emissivity of the surface

=

o zero-shear-rate viscosity
i, infinitc-shear-rate viscosity
f.r  reference viscosity, #,
" non-dimensional viscosity, f(7)/ 7.
z characteristic time of fluid
d Stefan-Boltzmann constant
¢ non-dimensional temperature,
T {(‘7:'\1'5!1 ) K.
Subscripts
[ exterior gnvironment
i inlet
ne natural convection
w wall.
Superscript

dimensional quantitics.

the following motivation. Since shear thinning is the
most readily measurable non-Newtonian property, it
is of practical interest to understand what flow prop-
erties can be correlated with it. An improved under-
standing of the physics involved in the hydro-
dynamically developed and thermally developing flow
in heat exchangers and in clectronic cooling will
greatly assist in the design and manufacture of these
products.

There have been a number of studies {5-10] on the
case of hydrodynamically developed, thermally devel-
oping flows of non-Newtonian (inclastic) fluids in
ducts. However, there do not appear to be any studies
focusing on inclastic fluids in rectangular ducts in
which the boundary conditions are directly applicable
to electronics cooling, which include the combination
of forced/natural convection and radiation to the
exterior environment from the duct and the impo-
sition of the heat dissipation from electronic com-
ponents to the duct walls. The present study not only

includes these more realistic boundary conditions, but
also the effect of viscous dissipation on the devel-
opment of the thermal field. Even at moderately low
Brinkman numbers, Vg A/ (Frr Dy ). which is a mea-
sure of the magnitude of the viscous dissipation, the
viscous dissipation can produce significant effects on
thermal development, as demonstrated by Gry-
glaszewski er al. [11]. Note 1, is the reference viscosity
taken as the zero-shear-rate viscosity, #,, and g is
the heat flux applied to the top boundary. To our
knowledge, this work is one of the first attempts to
examine the implementation of non-Newtonian
liquids into electronic cooling technology.

PROBLEM DESCRIPTION AND ASSUMPTIONS

In summary, the objective of this work is to predict
the steady hydrodynamically developed and the
thermally developing laminar flow of an inclastic fluid
in a rectangular duct, which is the key component



Effects of shear thinning on laminar heat transfer behavior

in an electronics cooling system. A schematic of the
system under consideration is shown in Fig. 1(a).
The exploded view of the coldplate and the individual
module are shown in Fig. 1(b). The heat dissipated in
an individual electronic box {or module) is carried
away by a heat pipe or solid conduction bar to the
heat exchanger (often referred to as the coldplate in
the electronics industry), and then heat is rejected to
the fluid (coolant). The fluid enters the duct with a
uniform temperature 7;, and since the flow is hydro-
dynamically developed, the velocity is determined by
balancing the externally imposed pressure gradient,
dP/dz, with the molecular diffusion of momentum
within the duct. The duct walls may be subjected to
any one or a combination of the following four ther-
mal conditions:

=

(a) an applied heat flux, §”, constant along any
given wall;

(b) a radiative flux, #e(T2 —T2), from the duct
to the exterior environment, where & is the Stefan-—
Boltzmann constant, and ¢ is the emissivity of the
surface ;

(c) a forced convective flux, A (T, —T.), from the
duct to the other flow channels, where 4, is the forced
convection heat transfer coefficient for flow along a
finite width plate ;

(d) a natural convective flux, h,.(T,,—7.)**, from
the duct to the exterior, where A, (7, —T.)"* is the
heat transfer coefficient with 4, depending upon ther-
mal properties and geometrical dimensions,

and the 5/4 power for the temperature exponent cor-

(a)

HEAT PIPE OR
CONDUCTION BAR N

OUTLET STREAM
{COOLANT)

OR MODULE

ELECTRONIKC BOX
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responds to an arbitrarily oriented flat surface in a
buoyancy induced flow [12, 13].

In order to simplify the computational model, the
following treatments are incorporated :

(a) constant fluid properties except for the viscosity
which is dependent on the shear rate;

(b) no axial conduction of thermal energy, which
requires that the Peclet number (i.c. the product of
the Reynolds number, Re, and the Prandtl number,
Pr) be large ;

(¢) buoyancy effects are much smaller than the iner-
tial effects within the fluid, which requires that the
ratio of the Grashof number to the square of the
Reynolds number, Gr/Re?, be small;

(d) generalized Newtonian (i.c. inelastic) fluid
according to the Carreau model;

(e} walls between coolant channels are infinitely
thin so that boundary conditions may be applied
directly to surface of fluid (i.e. conjugate problem not
considered here).

With the aforementioned constraints, the present
computational model represents an idealization of the
scenarios often encountered in electronics cooling
technology as illustrated in Fig. |,

FORMULATION AND NUMERICAL
TECHNIQUES

The non-dimensional form of the conservation
equations of mass, momentum, and energy for a
hydrodynamically developed and thermally devel-
oping flow in a rectangular duct are given as follows:

b
(b) |~ ELECTRONIC BOX OR MODULE

CONDUCTION BAR CR HEAT PIPE

[] }/-—COLDPLATE

L
COOLING CHANNEL
{COOLANT PASSAGE)
m
1R
i ! ELECTRONIC BOX OR MODULE
1
|

CONDUGTION BAR OR HEAT PIPE

F1G. 1. (a) Sketch of a multiple-channel flow system for electronic cooling, and (b) exploded view of
coldplate cross section and individual module.
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continuity

J Jv:(,\‘. yydxdy = 1.0 (3)

axial momentum :

¢ ) cr. . ¢
ax \"M7 oy v

>+2f Re=0 (4

RECIASN GRS
+Brr1(7)[<ax'>+<5}jﬂ+5v (5)

where Re = (pV,,,D,)/fi.r is the Reynolds number
based on 7, and f = (—dP/d)/[D,/(2pV2,)] is the
Fanning friction factor.

All of the pertinent features of the viscosity function
may be described by the Carreau model, equation (2).
which in dimensionless form is

0 =0, +Ge—n L0+ (Cur) 1" M (6)
At low shear rates (Cu7j <« 1.0). the model predicts
a constant viscosity #,. and at high shear rates
(Cu7 > 1.0). power-law behavior with a power-law
slope (n—1) will be obtained. The product of the
Fanning friction factor, f, and the Reynolds number,
Re, represents a momentum source term in the non-
lincar axial momentum equation [1].

In order to assess the role of viscous dissipation in
the thermal development of the flow field, the Brink-
man number, Br, a measure of the magnitude of the
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viscous dissipation, will be employed. This term may
often be ncglected for Newtonian fluids; however,
depending on the duct geometry and relative volu-
metric flow rate, viscous dissipation may have a
dramatic effect on the thermal flow field in non-
Newtonian fluids even with a modest value of the
Brinkman number. Note that when liquid cooling is
cmployed in electronics cooling, a mixture of water
and cthylene glycol is often the fluid of practical
choice. In this case even for a Newtonian fluid, the
effect of viscous dissipation should be examined. The
volumetric heat generation, S,, may arise from either
a chemical reaction or joule heating. Although these
cffects are seldom cxperienced in an electronics
cooling scenario, they are retained in the com-
putational model for generality.

Boundary conditions

Both the velocity and a generalized form of the
thermal boundary conditions in non-dimensional
form are given below. A sketch of the rectangular
duct with the problem specific boundary conditions is
shown in Fig. 2. The no-siip boundary condition is
applied along the periphery of the duct for the axial
velocity component. The thermal boundary con-
ditions along the periphery of the duct are given in a
generic form which incorporates boundary conditions
of the first, sccond, and third kinds in addition to
natural convection boundary conditions. thermal
radiation boundary conditions. or any combination
thereof':

axial momentum :

0-(0,1) =0 (7)

FORCED CONVECTION
BOUNDARY CONDITION

g% = Bite(® - 9c)

HEAT OUT
v, =0

HEAT OUT

0 .
v Bige(9 - ¢c)

ORCED CONVECTION
BOUNDARY CONDITION

HEAT OUT

vy = vi(x,y)
¢ =10 vz=0
% _ . 5/4
3 Binc(® - 0o
NATURAL CONVECTION
BOUNDARY CONDITION

F1G. 2. Specific thermal boundary conditions.
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r+1
uz(—z%,y)= 0 ®)

v.(x,0)=0 9)

+1
X, =] =0
(v 55
energy

dy\do dx\ d¢
C'*f’“z[(ds)a?(ds)a]: .

(10

(11)
where

C2=

1: non-constant temperature boundary condition
0: constant temperature boundary condition

(12)
ds = [(dx) +(dy)*]"? (13)
C,=1,+1,Bir+1, Bi, (p— )"
+1; Bia(9+ ) (@7 +¢2)  (14)
Cy =1 $given+ 15 Biee § + I Bip (9 — )" e
+ 1, Bina(p+ 9 ) (D> + ).+ 15" (15)

I =
{1 : constant temperature boundary condition

0: non-constant temperature boundary condition

(16)

1: forced convection boundary condition
I, = -
- 0: constant temperature boundary condition
(17)
1: natural convection boundary condition
I, = -
) 0: constant temperature boundary condition
(18)
1: radiative flux boundary condition
I, = ..
¢ 0: constant temperature boundary condition

(19)
: constant heat flux boundary condition

1
Is= .
| {0: constant temperature boundary condition
(20)

The Biot numbers, Bi, represent the ratio of the
exchange of energy between the duct and the
exterior environment by forced/natural convection or
radiation to the diffusion of energy within the fluid.

Solution methodology

Solutions of the problem defined by the foregoing
equations were obtained numerically by finite volume
proccdures [14, 15]. A second order accurate differ-
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ence scheme was employed for the diffusion terms
while the second order upwinding scheme [16] was
employed for the convective term in the energy equa-
tion for all interior nodal points. For the near bound-
ary control volumes, there was no need for a special
discretization equation since the boundary condition
data could be directly employed at the boundary face.
This convenient property arose due to the fact that
the grid points were placed at the centers of the control
volume. In the calculation of the rate of deformation
tensor, a second order central difference scheme was
employed for the interior nodes while a first order
difference between the near-boundary and boundary
nodal points was employed for the near-boundary
control volumes. In order to accurately calculate the
viscosity at the control volume interfaces, the har-
monic mean method [17] was employed.

A fully implicit solution technique was adopted for
both the momentum and energy equations at any
given axial location. At a given axial location, the
successive line under-relaxation (SLUR) procedure
[18] was employed for the solution of the implicit finite
difference form of the governing equations. Since the
energy equation is parabolic in the axial direction, a
marching solution was employed. For the momentum
equation, a predictor/corrector method has been
developed by employing the SLUR for the inner iter-
ation solver for a given f Re product in combination
with the van Wijngaarden—Dekker-Brent searching
methodology [19, 20] for the outer iteration.

Prior to employing the van Wijngaarden—Dekker—
Brent methodology, an initial estimate for the value of

/ Re, termed (f Re),, is generated either from values

obtained for larger power-law index. n, simulations
or from coarse grid solutions for the same power-
law index. The second outer iteration value for f Re,
termed ( f Re),, is obtained as follows

(f'Re); = (f Re)\/G,[(/ Re),]

where G [(f Re),] represents the continuity con-
straint,

@n

G(f Re) =1.0- (Vavg)culc 0. (22)

In all further outer iterations, the van Wijngaarden—
Dekker-Brent methodology is employed. In each
outer interation, there are now available three
abscissas ( f Re)a, (f Re)s, and ( f Re)¢, where

(a) (f Re)y is the latest iterate and the closest
approximation of the zero of the continuity con-
straint ;

(b) (f Re), is the previous iterate ; and

(c) (f Re)c is the previous or an older iterate so
that G[(f Re)y] and G[(f Re).] have opposite signs.

At each outer iterative step, the next iterate is
chosen from two candidates—one obtained by the
bisection algorithm and one obtained by an interp-
olation algorithm. Inverse quadratic interpolation is
used when (f Re)a, (f Re)y, and (f Re). are distinct
and linear interpolation (the secant method) is used
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whenever they are not. In the inverse quadratic interp-
olation, the next root estimate for the continuity con-
straint is given as

(/ R())nu\\' = (f R(J)B + P‘;Q (23)

where in terms of

i

Gl f Re)al/GILS Rede]
(’[(f R(I}H}f'f(;[(.{ Re) »\.{
GO RVAJIGIS Re)e]

It

R
)
T

I

we have
P = S{T(R—T){(/ Re)e— (/ Re)y

—(1-R)[(f Re)y—(f Re)a;
O =(T-1(R-1)(S—-1).

If the point obtained by interpolation is inside the
current interval and not too close to the end points,
it is chosen ; otherwise, the bisection point is chosen.
At all times, (f Re)y and (f Re). bracket the zero of
the continuily constraint ; morcover,

[GI(f Re)s]| < |G[(f Re) ). 24
When the internal |(f Re)y— (J Re)c| has been
reduced to satisfy

[(f Re)yp—{f Re)e| <107 {25)

the continuity constraint is considered satisfied, and
the iteration process for the momentum equation is
stopped. For complete details, see Brent’s text {19].

Convergence for the SLUR procedure was moni-
tored by examining how well the discretization equa-
tions are satisfied by the current values of the depen-
dent variables. For cach grid point, the residual R was
calculated as

R = Zuylly+b—a,l, (26)

where 0, are the neighboring dependent variables, and
a. are the coefficients corresponding to these neigh-
boring dependent variables, » represents the other
terms in the governing finitc difference equations, 0,
is the current nodal point dependent variable, and «,,
is the coefficient corresponding to 0. The convergence
criteria for the SLUR method required that for any
given grid point, the absolute valuc of the residual |R]
be less than 107%.

Presentation parameters

The specific thermal boundary conditions associ-
ated with a single coolant duct within the coldplate
were given in Fig. 2. The present thermal boundary
conditions are a subset of the generic thermal bound-
ary conditions presented in equation (11). The top
boundary of the coolant duct receives a constant heat
flux, ¢", from the conduction bar or heat pipe, while
the two side boundaries exchange energy to the two
adjacent cooling channels via forced convection, Bi..
The bottom boundary of the coolant duct is usually

W. K. GINGRICH ¢ af.

located at the bottom of an clectronics cabinet and
often acts as the top boundary of an enclosed air
space. Hence, the cnergy exchange between the cool-
ant duct’s bottom surface and the cnclosed air space
may be by either natural convection or radiation or a
combination of the two. In the present study, the
energy exchange from the coolant duct’s bottom
boundary to the enclosed air space only includes
the natural convective energy transfer. Bi,.. Rep-
resentative values for ¢". Bi, and Bi,., commonly
encountered in the electronic cooling applications, are
given as 1.0, 10.0. and 1.0, respectively, and these
values arc adopted for all of the numerical simula-
tions. Also, we only consider a duct aspeet ratio of
1.0 in the current investigation.

In the design of a liquid cooling system for elec-
tronics, a design engineer must examine three key
parameters in order to ensure a reliable and cost effec-
tive design. The first parameter is the pressure drop
within the system. Once a Reynolds number has been
chosen, the value of f Re will yield the pumping
requirements {i.c. pressurc drop) for the system under
consideration. Second, the heat transfer rate from the
heated wall of the coolant duct to the fluid is another
key parameter. The heat transfer rate ultimately deter-
mines the junction temperature of the electronic com-
ponents, which, in part, dictates the reliability of the
entire system. The third key parameter is the increase
of the bulk fluid temperature as a function of axial
distance. The axial gradient of the bulk fluid tem-
perature is an indicator of the overall thermal gradient
within the system. As stated earlier, this thermal gradi-
ent must be minimized to ensure system reliability and
accuracy. Henee, these arc the three parameters which
we will concentrate on in our present assessment of
the role of shear thinning of an inclastic fluid in a
heated rectangular duct.

The f Re product shall be examined in terms of the
wall shear rate and viscosity in order to delincate its
characteristics in non-Newtonian flows. In the non-
dimensional Carrcau cquation the values of 5, and
i, arc taken as 1.0 and 0.0, respectively. Another
paramcter is the axial bulk fluid temperature which in
dimensionless form can be expressed as

ar

(ﬁbulk = (r+ l)g

”‘z‘:(x, »o(xydxdy. (27)

The bulk fluid temperature is examined in terms of
shear thinning for the Carrcau number between |
and 50, the power-law index from 0.2 to 1.0, and the
viscous dissipation of the fluid with the Brinkman
number varying between 0 and 50. The final parameter
of interest is the averaged Nusselt number along the
top boundary which can be written in dimensionless
form as follows

(2R P
“= <r+ 1) J‘(qsw‘mczm "¢bu!k) dx (—8)

where the mean wall temperature is given as
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2r
Dumean = 1 P, (x,y) dx (29)
where ¢,,_is the temperature along the top boundary.
The Nusselt number will also be examined in terms of
shear thinning and viscous dissipation. The values of
Cu, n, and Br are typical of designs presently under
consideration.

RESULTS AND DISCUSSION

Prior to presenting any solutions of our main inter-
est, the appropriate grid size is assessed. On a uniform
grid, a series of simulations of varying grid sizes was
made for the momentum and continuity equations for
a Newtonian (n = 1) fluid, for which well established
values of /" Re are available. As depicted in Fig. 3, the
value of f Re became independent of the number of
grid points beyond a grid size of 52 x 52. Hence, for
all calculations a 52 x 52 grid size will be employed.
For the energy equation an appropriate axial space
marching step had to be determined. Upon examining
spatial marching step sizes from 107 to 1077, it was
found that beyond the first three axial spatial steps
the results were independent of the step size employed.
Thus, a step size of 10~* was employed for all cal-
culations in order to balance the need for resolving
the fast profile variation in the entrance region
and obtaining solutions with resonable computer
resources.

Figure 4 shows f Re as a function of Carreau num-
ber for different power-law indices. As expected, the
f Re product decreases with increased shear thinning
(i.e. increasing Carreau number andjor decreasing
power-law index). In order to further delineate the
physical mechanisms involved in Fig. 4, Figs. 5(a)
and (b) show the distribution of the viscosity and
shear rate along the wall in any given x—y plane with
different values of Carreau number and a power-law
index, n = 0.8. Tt is observed that while the viscosity

15.0
14.5
& \ g —8
w
o 14.01
e
EXACT ANALYTICAL SOLUTION VALUE:
*RE = 14.22708
13.51 SHAH AND LONDON CORRELATION VALUE:
- 1*RE = 14.2296
COMPUTATIONAL RESULT FOR 72 X 72 GRID:
"RE = 14.21588
13.0

0 1000 2000 3000 4000 5000 6000

NUMBER OF GRID POINTS

F1G. 3. Product of Fanning friction factor and Reynolds
number vs number of grid points. The present calculation
used a grid number of 52 x 52 (= 2704).
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n=08

n=02

5

10’ 102 102 104

CARREAU NUMBER, Cu

F1G. 4. Product of Fanning friction factor and Reynolds
number vs Carreau number.

varies with Cu, the wall shear rate profiles are similar
irrespective of the Carreau number. According to the
viscosity formula, equation (6), the fluid behavior
mimics that of a power-law fluid, since, as dem-
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0.0 . , . .
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5b
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w
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e

i
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w

—

E

Q
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& 4] —— Cu=100

G e

Z' 2 U= .|

(e} ~—— Cu = 10000.0

4

0 T T v r

0.0 0.2 0.4 0.8 0.8 1.0
NON-DIMENSIONAL DISTANCE ALONG WALL

F1G. 5. (a) Non-dimensional viscosity vs non-dimensional

distance along wall, i.e. z = 7/(D, Re Pr), and (b) non-

dimensional shear rate vs non-dimensional distance along

wall both for a fixed value of n = 0.8. Cu = Carreau number
defined in equation (2).
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*RE

POWER-LAW INDEX, n

F1G. 6. Product of Fanning friction factor and Reynolds
number vs power-law index, n.

onstrated by Fig. 5(b), (Cuy)" is large for almost the
entire wall region. Furthermore, by maintaining a
fixed mass flow rate through the duct, the value of
f Re must adjust according to the value of Cu in
order to satisfy the constraints arising from both mass

7a

0.61
0.4'1

0.21

NON-DIMENSIONAL VISCOSITY

n=02

0.0 T r . .
0.0 0.2 0.4 0.6 0.8 1.0

NON-DIMENSIONAL DISTANCE ALONG WALL

70

25

n=02

NON-DIMENSIONAL SHEAR RATE

0 T T y T
0.0 0.2 0.4 0.6 0.8 1.0
NON-DIMENSIONAL DISTANCE ALONG WALL

F1G. 7. (a) Non-dimensional viscosity vs non-dimensional

distance along wall, i.e. z= Z/(D, Re Pr), and (b) non-

dimensional shear rate vs non-dimensional distance along
wall both for a fixed value of Carreau number of 1.0.
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continuity and velocity profile similarity. Hencee, £ Re
decreases monotonically along with Cu for a given
valuc of power-law index.

In Fig. 6, /" Re as a function of power-law index is
given for different Carrcau numbers. As expected, for
a decreasing power-law index, f Re decreases. indi-
cating that by increasing the degrec of shear thinning
of the fluid, the wall shear rate decreases. Despite the
fact that the wall shear rate inereases as # becomes
smaller, the viscosity decreases even faster. clearly
obscrved in Figs. 7(a) and (b). Since the shear stress
1s the product of the shear rate and the viscosity, there
will be a net decrease in wall shear stress (i.e. /' Re).

In the previous set of results the values of the power-
law index have ranged from n=1.0 to n=0.2. It
should be emphasized that the results presented above
could even be obtained for a relatively low power-law
index, # = 0.2. It is well known that as n becomes
smaller, the relationship between the fluid viscosity
and shear rate becomes more nonlincar. cuausing
increasing difficulty in obtaining numecrical solutions.
In fact, to our best knowledge. the computational
results associated with such a low value of # for this
particular flow scenario have never been reported in
the literaturc {21, 22].

The averaged Nussclt number along the top bound-
ary as a function of power-law index, Carreau num-
ber, and Brinkman number is shown in Figs. 8-10.
For Br = 0. Figs. 8(a). 9(a). and 10(a) show the cffect
of the Carreau number for a range of power-law index,
n=0.2-1.0. It is seen for any non-zcro valuc of the
Brinkman number, there is a significant increase in
the top boundary average Nusselt number as Carreau
number increases for a given power-law index fluid.
The effect of shear thinning on the overall heat trans-
fer ratc becomes more modest as the Brinkman num-
ber reducces to zero, due to the fact that, with Br = 0,
no heat source (i.e. viscous dissipation) is present
within the fluid. Likewise. for decreasing values of the
power-law index at a given Carrcau number, there is
an increase in the heat transfer from the top boundary
to the fluid for all non-negligible values of Brinkman
numbers. Furthermore, for non-zero Br, this increase
is quite dramatic. For a given power-law index and
Carrcau number. an increasing viscous dissipation
results in a significant decrease in the heat transfer
between the wall and the fluid. The overall impact
of the Brinkman number on the Nusselt number
depicted in Figs. 8-10 is quite substantial.

In all of the figures presented, there is a region in
the proximity of z = 0.1 where there is a local mini-
mum in the heat transfer between the wall and the
fluid followed by a gradual approach to an asymptotic
statc near = = 1.0. The reason for this local minimum
in the top boundary’s Nusselt number may be
explained in terms of the difference in the rate of axial
temperature increase between the top boundary's
centerline and its side corncr locations. As a rep-
resentative case for Cu= 1, n = 0.6, and Br = 0.5,
Fig. 11 depicts the top boundary’s centerline and side
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corner temperatures, and the mean temperature (i.c.
see a dashed line) along with the bulk fluid tempera-
ture. It is clearly seen that while the difference between
the bulk fluid temperature and top boundary corner
temperature becomes smaller with axial distance, the
difference between the centerline temperature and the
bulk fluid temperature increases. The physical mech-
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FiG. 11. Non-dimensional temperature vs non-dimensional
distance along wall, i.e. z = /(D, Re Pr}.

anism responsible for this phenomenon is the differ-
ence in the local shear rate as well as the viscosity for
the corner and centerline locations which affect the
energy balance. The varying slope of the four tem-
perature profiles along the axial direction, as shown
in Fig. 11, results in the appearance of a minimum
value in the Nusselt number profile.

In order to quantify the effect of shear thinning with
the viscous dissipation, Fig. 12 presents the percent
increasc in heat transfer by taking the ratio of the
heat transfer at # = 0.2 (i.e. highly shear thinning) to
n = 1.0 (i.e. Newtonian) as a function of Brinkman
number at Cu = 10. Hence, it may be observed in
these graphs that a highly shear-thinning fluid
(n=02) at a relatively low Brinkman number
{(Br = 0.5), a fluid combination which will probably
be employed in future electronics cooling appli-
cations, can have a more significant advantage in heat
transfer removal than its Newtonian counterpart with
the same Br. In present electronics cooling appli-
cations with ethylene glycol (i.e. a Newtonian fluid),
the Brinkman number varies from 0.01 to as high as
1.0.

As mentioned earlier, another parameter of sig-
nificant design interest for electronics cooling is the
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F1G. 12. Nusselt number ratio vs Brinkman number at three

different axial locations. Note that z = (D, Re Pr). The

Nusselt number ratio represents the relative increase of the

Nusselt number compared to a Newtonian value due to the
use of non-Newtonian fluid.

bulk fluid temperature. Figures 13-15 show the bulk
fluid temperature as a function of power-law index,
Carreau number, and Brinkman number. For Br = 0,
the rise in the bulk fluid temperature is virtually inde-
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pendent of both the power-law index and Carreau
number (i.e. shear thinning). One should note that
even with Br =0, the detailed temperature dis-
tribution is clearly affected by the effect of shear thin-
ning, as shown by the variation of the Nusselt number
depicted earlier in Figs. 8-10. It is the bulk fluid tem-
perature, which is an average of the local velocity
and temperature profiles, that is mostly unchanged by
shear thinning.

For a non-zero Brinkman number, the rate of
increase of the bulk fluid temperature as the fluid
travels downstream of the initial heated cross sections
varies significantly with the fluid’s shear-thinning
characteristics. The percentage increase in the bulk
fluid temperature between a Newtonian fluid (n = 1.0)
to a highly shear-thinning fluid (» = 0.2) may be 10:1
for Br = 0.5to as high as 150 : 1 for Br = 50. Itis noted
that with a given non-zero Br, the level of viscous
dissipation of a shear-thinning fluid is higher than
that of a Newtonian fluid because of its enhanced
magnitude of the velocity gradient. Hence, it would
seem that more heat generation produced within the
the bulk fluid would cause an increase in the overall
fluid temperature of a shear-thinning fluid ; however,
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the fact that shear thinning can also result in a cor-
respondingly higher temperature gradient means that
the non-Newtonian fluids considered here can effec-
tively transport this excessive heat away from the
fluid. The net outcome is that shear thinning makes a
non-Newtonian fluid more effective in heat transfer
as the Brinkman number increases.

SUMMARY AND CONCLUDING REMARKS

The present study is an attempt to numerically
model the hydrodynamically developed and thermally
developing flow associated with an inelastic non-
Newtonian fluid in a rectangular channel, a key com-
ponent of an electronics cooling system. The follow-
ing are the key findings:

(1) When the viscous dissipation is present in an
electronics cooling system, the electronics design engin-
eer may significantly increase the system reliability
(i.e. decrease the component’s junction temperature)
by employing a shear-thinning non-Newtonian fluid.

(2) For Br # 0, there is a significant increase in the
averaged Nusselt number along the top boundary for
both an increasing Carreau number for a given power-
law index fluid and a decreasing power-law index
for a given Carreau number. For a given power-law

index and Carreau number, an increasing viscous dis-
sipation results in a significant decrease in the heat
transfer between the top boundary and the fluid. For
flows with non-negligible viscous dissipation, the rate
of increase of the bulk fluid temperature as the fluid
travels downstream of the initial heated cross-section
varies significantly with the fluid’s shear-thinning
characteristics.

(3) For Br = 0, the averaged Nusselt number along
the top boundary does not have a strong dependence
on either the Carreau number or the power-law index ;
whereas, the bulk fluid temperature is independent of
both the power-law index and Carreau number (i.e.
shear thinning).

(4) A new algorithm, comprised of the van
Wijngaarden—Dekker—Brent root finding method-
ology, in conjunction with the SLUR method, has
been developed to solve the coupled continuity and
momentum equations for low power-law index fluids.

(5) By maintaining a fixed mass flow rate through
the duct, the value of f Re must adjust according to
the value of Cu in order to satisfy the constraints
arising from both mass continuity and velocity profile
similarity. Hence, f Re decreases monotonically along
with Cu for a given value of the power-law index.
Also, for a decreasing power-law index, f Re
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decreases, indicating that by increasing the degree of
shear thinning of the fluid, the wall shear rate
decreases.

Even without secondary flows as postulated by
Harnett and Kostic [1], the present study has delin-
cated the significant enhancement in the laminar heat
transfer behavior through the use of shear-thinning
inelastic fluids in a heated rectangular duct. In order
to fully optimize a liquid cooling scheme for elec-
tronics, the mechanism responsible for the secondary
flow formation, the viscoelatic nature of the fluid, and
the conjugate heat transfer issue will be addressed in
future studies. Furthermore, the effect of temperature
dependence upon the shear-thinning viscosity and
subsequently upon the heat transfer will be inves-
tigated.
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EFFETS DE L'AMINCISSEMENT CISAILLANT SUR LE COMPORTEMENT
THERMIQUE DANS UN CONDUIT RECTANGULAIRE

Résumé—La dynamique du fluide et le transfert thermique dans 1'écoulement laminaire non newtonicn
dans des conduits non circulaires sont intéressant d cause du large domaine dapplication potential aux
échangeurs compacts et dans le refroidissement en électronique. La présente ¢tude concerne la convection
forcée laminaire de fluides non newtoniens inélastiques dans un conduit rectangulaire non uniformément
chauffé, quand F'écoulement est établi mais pas la convection. Les ¢quations sont résolues par une méthode
de volumes finis. Les effects de 'amincissement cisaillant, donné par I'équation de Carreau, et la dissipation
visqueuse caractérisée par le nombre de Brinkman sont examinés & travers le coefficient de frottement, le
nombre de Nusselt et la température du fluide. Les résultats indiquent que lorsque la dissipation visqueuse
est présente, le transfert thermique & partir de la surface chaufiée du conduit est fortement augmenté avec
I'amincissement du fluide alors que la vitesse d'accroissement de la température du fluide avee la distance
axiale décroit significativement. En cons¢quence, 'utilisation d'un fluide non newtonien a amincissement
cisaillant pour 'amélioration du transfert thermique apparait étre trés prometteuse.

WARMEUBERGANG BEI LAMINARER KONVEKTION IN EINEM RECHTECK-
KANAL UNTER DEM EINFLUSS EINER SCHUBSPANNUNGSBEDINGTEN VERDUNNUNG

Zusammenfassung—Fluiddynamik und Wirmetbergang in der laminaren Stromung ecines nicht-New-
ton’schen Fluids in cinem nicht-kreisformigen Kanal ist von besonderem Interesse im Hinblick aufl die
Weite der moglichen Anwendungen in Kompaktwirmeaustauschern und bei der Kiihlung elektronischer
Komponenten. In der vorliegenden Arbeit wird der Warmetiibergang fiir laminare erzwungene Konvektion
eines nicht-elastischen nicht-Newton'schen Fluids in einem ungleich(érmig beheizien Rechteck-Kanal
untersucht. wo die Strémung hydrodynamisch, jedoch nicht thermisch ausgebildet ist. Die grundlegenden
Gleichungen werden mit Hilfe eines Finite-Volumina-Verfahrens gelost. Sowohl fiir die Diffusions- wie
auch die Konvektions-Terme werden Differenzenschemata zweiter Ordnung angewandt. Dic Einfliisse der
schubspannungsbedingten Verdiinnung (beriicksichtigt durch dic Carrcau-Gleichung) und der viskosen
Dissipation (entsprechend der Brinkman-Zahl) werden anhand der Widerstandsziffer, der Nusselt-Zahl
und der Kerntemperatur des Fluides untersucht. Dic Ergebnisse zeigen, daB3 der Wiirmeiibergang an der
beheizten Oberfliche mit zunchmender schubspannungsbedingter Verdiinnung des Fluids stark zunimmt.
Im Gegensatz dazu verringert sich das Anwachsen der Fluidtemperatur in axialer Richtung spiirbar.
Es kann festgchalten werden, daly sich durch Verwendung nicht-Newton’scher Fluide, die sich unter
Schubspannung verdiinnen. der Wirmelbergang wesentlich verbessern 1dt. Dieses viclversprechende
Konzept ist es somit wert. weiter untersucht zu werden.

BJUSHUE CHUXEHUS BA3KOCTU C POCTOM CKOPOCTHU CABUTA HA
XAPAKTEPUCTHUKH JTAMHHAPHOI'O TEIUJIOITEPEHOCA B KAHAJIE
MPAMOYTOJIBHOT'O CEYEHHNA

AnHoTamns—JIMHAMEKA XHOKOCTEH ¥ ra3os, a TAKXE XapaKTEPHCTHKH TEMIONEPEHOCA [pH JIaMHHAD-
HOM TEYEHWH HEHBIOTOHOBCKOM XHIKOCTH 110 KaHallaM HEKPYroBOTO CEYeHHs NMpPENOCTaBJIAIOT ocoObIk
MHTEPEC H3-32 IIMPOKOTO HHANA30HA UX BO3MOXHOIO NPUMEHEHHS B KOMIAKTHBIX TEMJIO0OOMEHHUMKAX H
IUIS OXJIAXAEHUS 3JEKTPOHHMKH. B nacrosiued paGoTe mcciaeayroTcs XapaKTEPHCTHKHM TEIonepeHoca
[pY JIAMHHAPHOM BBHIHYXJEHHOH KOHBEKIMM HEYNPYIMX HEHBIOTOHOBCKMX XHAKOCTEH B HEOQHOPOAHO
HAarpeBa€MOM KaHajle IPSAMOYTOJIBHOTO CEYEHHs, TCHCHAE B KOTOPOM ABJIAETCA THAPOAMHAMHYECKH pas-
BHTBIM M TEPMHYECKHM pa3BuBarolumcs. Onpenensiolie YpPaBHCHHS PEIIAIOTCS METOAOM KOHEYHBIX
06beMoB. /18 CilaraeMbix, COOTBETCTBYIOIUX JUu(dy3nK # KOHBEKIHH, HCOJIb3YIOTCA TOYHBIE Pa3HOCT-
HBIE CXEMBI BTOPOTO NOPsAKa. I¢GeKThl CHIKEHUS BA3KOCTH, ONUCbIBaeMBble ypasHeHneM Kappo, u Bsi3-
KOCTHAsi [OUCCHTALMS, XApaKTepU3ylollasics 4YMCIoM BpHHKMaHa, HCCIEXYIOTCH B 3aBHCHMOCTH OT
ko3¢ duumenTa Tpenus, yucjia HycceabTa M CpeaHeMaccOBOH TeMmepaTypel XHIAKOCTH. Ilonyuentbie
Pe3yJIbTATHI MOKA3BIBAIOT, YTO [PH HAJIHYHMH BA3KOH OMCCHIIAILMH TEILUIONEPEHOC OT HATPETOMH I10BEpX-
HOCTH KaHAJIA CYLIECTBEHHO YCHJIMBAETCHA C YBEAMMEHHEM CKOPOCTH CABHIa XHIKOCTH, B TO BPEMS Kak
CKOPOCTH POCTA €€ CPeIHEMACCOBOM TEMIEepaTyphl 3HAYNTEIBHO YMEHBIAETCA C OCEBBIM PACCTOAHKEM.
Ciie10BaTeNIbHO, MAEH HCTIOJIBb30BAHUS HEHbIOTOHOBCKOH JXHMIKOCTH, XapaKTE€PH3YIOLIEHCH CHIKEHHEM
BSI3KOCTH C POCTOM CKOPOCTH CABHIa, U1 MHTEHCH(HKALNK TENJIONICPEHOCA ABIAETCHA NEPCIEKTUBHON
34CITY)KMBAET JaJIbHEHIIIEr0 pacCMOTOPEHHUS.



